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C H A R G E D  J E T  O F  A N  I N C O M P R E S S I B L E  L I Q U I D  IN A N  E L E C T R I C  F I E L D  

A. A. Shutov and A. A. Zakhar 'yan  1 UDC 541.24:532.5 

The problem of the jet flow of  an incompressible liquid with free boundaries in an electric field 
is solved in the approximation of a laminar boundary layer. An exact solution for a round jet is 
found in the class of self-similar solutions. In the case of a fiat slit jet, a solution is constructed 
in the form of a series in powers of the coordinate transverse to the plane of symmetry. The 
dependence of the radius (half-width) on the longitudinal coordinate is 9iven. 

The formation of jets in an electric field is one of the sources of the generation of charged drops 
and filaments for various fields in electro-drop-jet technology and the production of highly efficient filtering 
materials [1]. The capacity to produce long jets in an electric field belongs mainly to liquids that are 
"poor conductors," occupying an intermediate position in electrophysical properties between insulators and 
electrolytes. When injected through capillaries under the action of an electric field, liquids can form surprisingly 
stable, very thin jets that  continuous over the entire interelectrode gap, which reaches lengths of meters in 
individual experiments. Capillaries with diameter of ,--1 mm and an electric-field strength E ~- l0 s V/m or 
higher are used, as a rule. The resulting jets have diameter of 1004}.1/zm, and their specific volume density of 
charge can reach hundreds of C / m  3 [2, 3]. In the present paper, we use equations of the boundary-layer type . 
to describe such flows, and the procedure for deriving them here does not involve the assumption of a large 
Reynolds number. Below, we confine our analysis of motions to the approximation of "frozen-in" charge, i.e., 
to large electric Reynolds numbers Req = V/(bE) >> 1, where V is the characteristic velocity, b is the charge 
mobility, and E is the electric-field strength [4, 5]. 

S p a c e - C h a r g e d  R o u n d  J e t .  Let us consider a stationary axisymmetric jet with space charge density 
7 = const in a uniform electric field E parallel to the z axis. The equation of motion 

p V V V  = - V p  + / J A Y  -t- "rE (1) 

in dimensionless form contains the parameter s = pQ2/(2r2",/Er~) = pQ3/(2~r2IEr~). Here V is the liquid-jet 
velocity, p and /z are the density and viscosity, Q is the volumetric flow rate of the liquid, r0 is the initial 
radius of the jet, and I = 7Q is the total electric current carried by the jet. In the case of strong fields (s << 1), 
which we shall consider below, the equations can be simplified as follows. We assume that the form of the 
continuity equation, O(rv)/rOr + Ou/Oz = O, and the form of the kinematic condition for the stream function 
at the free surface, r  r = f )  = Q/2r ,  which serves to determine the unknown boundary r = f ( z )  do not 
depend on the following transformation of parameters: z -* z, r ~ gl(s)r, u ---* g2(s)u, and v ~ g3(s)v, where 
u and v are the longitudinal and transverse velocity, respectively. We then have the following relationship 
between the functions: ga -- gig2 and g2g~ = 1. We assume that, just as in the theory of a laminar boundary 
layer, the motion of liquid in a layer or a jet, going predominantly in the longitudinal direction (v << u), 
is due to viscous transfer of longitudinal momentum in the transverse direction. Then, from the condition 
of equality of the orders of magnitude with respect to s of the inertial, viscous, and electric terms in the z 
projection of Eq. (1), we have gl ~' s 1/4, g2 " ~  S-I/2, and g3 "~ s -1/4. The contribution of the pressure p, 
which is proportional to the capillary pressure PT = T / f  and is on the order of s -1/4, is small compared to 
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the leading terms, which are on the order of s -1. Thus,  the transformation z --~ z, r - - *  sl /4r ,  u - - *  S-I/2u, 
and v ---* s - ] /4v  and isolation of the leading terms in powers of s -1 in the Navier-Stokes equations lead to 
the equations 

Ou au 1 1 O Ou 1 
u ~ + v o-7 = Re ,- o,- " ~ + 2s' (2) 

0 0 
-~z ru + -~r rv = 0 (3) 

with the boundary conditions 
v(~,  r = 0) = 0, (4) 

~bCz, r = f )  = 1/2, (5) 

I ( z  = 0) = 1. (6) 

These equations are writ ten in dimensionless form, in which the scales ro, Q/Orr2o), and Q/~r [Re = 
pQ/(~rrop)] are chosen for lengths, velocities, and the stream function. Such a procedure for deriving the 
standard boundary-layer equations was used in [4]. Determining ~b from the equations u = a~b/rar and 
v = -a~b/rOz and taking ~b(z, r) = r where ~ = r2/v/-~, from (2) we obtain the following equation for r 

8 (~r  + 4r - 2r  '2 + 1/2s = 0 (7) 

(a prime denotes differentiation with respect to ~). The  solution of Eq. (7) in the form of a series in whole 
powers of the argument ,  which because of condition (4) begins with the linear term, is cut off at the third term, 
and for nontrivial coefficients of the  function 0 = ai~ + a2~ 2, we have the equation 16a2/Re - 2al 2 + 1/2s = 
0. Substi tuting this solution into (5), we find the dependence of the  radius of the jet  on the longitudinal 
coordinate: 

I (~ )  - v 2~2 N + , , I - 7 -1 .  
(8) 

From condition (6) we find a2 = 1/2, so that  

For z >> 1 and s << Re/16, from (8) we obtain an expression for the radius, 

I ( z )  = ( s / z )  ' /4 ,  (9) 

which in dimensional form does not depend on the initial radius or the viscosity of the liquid. 
S u r f a c e - C h a r g e d  R o u n d  J e t .  The electric and hydrodynamic fields interact through the jet 

boundary: the  force i r e  acts per unit  surface area in the tangential direction and the force tr2/2e0 in the 
normal direction, neglecting the  dielectric term (~ is the surface charge density and e0 is the dielectric 
constant) [6]. In accordance with the condition of constancy of the electric current  of "frozen-in" charges 
in the deformed volume, we have cr ,,, f ( z ) .  As the jet  contracts, tr decreases, so tha t  the normal action 
on its boundary,  which is a quadratic function of ~r, can produce a dominant  pressure field in the overall 
balance of interactions only in the immediate  vicinity of the liquid injection point. Downstream the dynamics 
is determined by the  transfer of longitudinal momen tum across the jet  from the boundary toward the axis. 
A similar mechanism of flow development by relaxation of longitudinal m o m e n t u m  into the interior of the 
liquid occurs in a submerged jet,  in which, in contrast to the case under  consideration, the viscous transfer of 
momentum goes in the  opposite direction, from the axis toward the periphery. Let us consider the equations 
of a laminar boundary  layer (2) and (3) for 3' = 0, which are commonly used in the  theory of submerged 
jets [7, 8], with Eqs. (4) and (5) and the boundary condition for shear stress. We obtain the latter from the 
following considerations. For a conserved electric current I ,  we have I = ~27rfvr = 2 ~ Q / f ,  where vr is the 
velocity of the  boundary streamline. Substi tuting a into the tangential condition p(Ou/Or + Ov/Oz) = c~E 
and isolating the leading terms in s, we obtain the following boundary condition in the tangential direction: 
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1 0u Re 
- for r = f ( z ) .  (10) 

f 0r  4s 

The solution of problem (2)-(4) and (10) for 3' = 0 is found in a domain limited in the transverse 
coordinate to the radius of the jet, r ~ f(z) ,  0 <~ z < oo, where f ( z )  must also be determined in the course 
of the solution. The procedure used above to determine r = gP(~)z and ~ = r2 /v  ~,  yields the following 
expressions for the surface of a charged jet: 

l '64sz,1/4 [ ~ Re 
r  2, cl = l / x / ~ ,  c 2 = R e / 3 2 s ,  f ( z ) =  ~,-R-~-e2 ) ~ i +  4- '~-1" (11) 

Dependence (11) for z >> Re/4  coincides with (9). Relations (9) and (11) agree well with experimental profiles 
in the region far from the liquid injection point [9, 10], whereas they give an incorrect coordinate dependence 
of the jet radius near the coordinate origin. The latter is due to the fact that  the Ohmic component  in the 
overall charge flow plays an important  role in this region, and the assumption that  the charge is frozen in is 
therefore invalid. 

P l a n e ,  S u r f a c e - C h a r g e d  J e t .  The formulation of the jet problem for a liquid escaping from a plane- 
parallel slit lying in the yz plane, analogous to the formulation for a round jet, is represented in the form 

0= 1 (12) 
u-~z + v Oy - Re \ Ox 2 + Oy2 ] ' 

Ou Ov 
o-7 + = 0; (13) 

l im (0_~ + 0v.zv ) = __Ref for y =  f(x) ;  (14) 
�9 "--+OO S 

, ( x , v  = 0) = 0; 0 5 )  

r  ----- f ( x ) )  = 1, Ivl ~< f ( x ) ,  0 ~< x < oo, (16) 
where lengths, velocities, and the stream function are normalized to the quantities L, q/L,  and q, respectively, 
u and v are the velocities in the  longitudinal (z) and transverse (y) directions, and L is the unit  of length 
in the z direction. The  quantit ies q = A Q / L  and i = A I / L  are the specific flow rate and the current per 
unit length, respectively. Here AQ and A I  are the volumetric flow rate and the electric current along a strip 
of length L cut out from the jet  by two planes perpendicular to the z axis. We assume that  the velocities 
do not depend on the z coordinate,  the field E is directed along the z axis, f ( x )  is the half-thickness of the 
jet, Re = pq/I ~, and s = pq3/(iEL3). Boundary condition (14) is written in the form of a limiting transition 
because of the assumption tha t  charge transfer is purely convective, which is satisfied the more accurately, 
the farther an element of the jet  lies from the coordinate origin. Just  as in the axisymmetric problem, we 
seek a solution that  gives an expression for u that  increases along the longitudinal coordinate. We construct 
the solution of problem (12)-(16) in the form of a power series with respect to the transverse coordinate, 
u = ~ b,,y", where bn is a function only of z. We use the symmetry  of the velocity, u(x, y) = u(x, - y ) ,  and 

0 

the expansion of u then contains only even powers of y. We write velocities satisfying the continuity equation 
(13) and condition (15) as follows: 

x-- b 2n u = L ,  2ny , o=-~"~b~2, t (z )y2"+l / (2n+l) .  
0 0 

Substitution of these expressions into (12) and isolation of terms to the same powers of y lead to a finite 
system of equations that  has the following form for the first four functions bn: 

bob~ ~ = bg + 2b2 bobS2 - b'ob2 - by + 12b4 bob, 4 _ 3b,ob4 + b2b,2/3 _ b~ + 30b6 (17) 
Re ' Re ' Re 

This system is constructed so that  with the successive addition to it of new equations, only one new 
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unknown is introduced each time in the current list of functions b, to be determined. This considerably 
simplifies the procedure for solving system (17). Indeed, substituting the velocity into (14), we have 

lirn [2b2 - bg + (4b4 - b~/3)f 2 + (6b6 - b~/5)f 4 +. . . l  = Rels. (18) 

As shown below, f (x)  and all the coefficients bn except for b0, are decreasing functions of x, and then from 
(18) we obtain 

2b2 -- bg -- Re/s. (19) 

Eliminating b2 from (19) and the first equation of system (17), we obtain the following equation for b0: 

bob~ ~ = 2bg ~ Re/s 
Re 

Integrating it, we have b~ - orb02 + flz = 0, where a = Re/4, and ~ = Re/2s. The change of variables 
b0 = -~/o~g and t = (ctfi)l/3x converts this equation into g" - 9t = 0, whose solution is the Airy function 
9 = clAi(t) + c2Bi(t) [11]. Since Bi(t) results in a slowing flow, we have the constant c2 = 0. Returning to 
the variables b0 and z, we obtain 

~ K213 (7}) 
b0 -- K1/3 (t/), 

where Km is a MacDonald function of the ruth order; t /=  2(a~)l/2z3/2/3. All the remaining coefficients b, 
are determined by simple differentiation of the corresponding expressions; in particular, we find b2 using (19), 
b4 is calculated from the second equation of system (17), etc. An idea of the behavior of bn at large x is given 
by the first terms of the expansions of the corresponding functions: 

Re 2 ~/B 
b 0 = ~ - l / 2 a z ,  / ~ = R e / 2 s - ~ / ~ / 6 4 a z  3, b 4 = ~  ~z" 

We note that the dependence u = V~(1 + const-y2/V ~ is similar to the corresponding dependence 
for a round jet, whereas the asymptotic profile in the flat case, f ( z )  = ~ ,  decreases faster along the 
longitudinal coordinate than that for a round jet. 
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